Developing a Data Model

Workshop on Data and Metadata Sharing Bangkok, 10-14 December 2018

Abdulla Gozalov, UNSD

Figures vs Data

1.1 Proportion of population below \$1 (PDP) per day.													
Series	1990	1992	1994	1996	1998	1999	2000	2002	2006	2007	2008	2009	2011
Rwanda													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012							74.6 ^{1,3}		72.1 ^{1,3}				63.2 ^{1,3}
State of Palestine													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012										0.4 ^{1,2,3}		0.0 ^{1,2,3}	
Thailand													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012	11.6 ^{1,3}	8.6 ^{1,3}	4.1 1,3	2.5 ^{1,3}	2.1 ^{1,3}	3.2 ^{1,3}	3.0 ^{1,3}	1.6 ^{1,3}	1.0 ^{1,3}		0.4 ^{1,3}	0.4 ^{1,3}	

- Figures by themselves are meaningless.
- For data to be usable, it must be properly described. The descriptions let users know what the data actually represent.

Developing a Data Model for SDMX Exchange

- In some aspects similar to a developing a relational database
- In SDMX, data model is represented by a Data Structure Definition.
 - The "shape" of SDMX DSD is roughly similar to star schema.
- To design a DSD, we first need to find *concepts* that identify and describe our data.

Concept

- "A unit of knowledge created by a unique combination of characteristics"*
- Each concept describes something about the data.
- Concepts should express all relevant data characteristics.

Identifying Concepts

Obs. Value

Dimension

- Which of the concepts are used to identify an observation?
 - Indicator
 - Reference area
 - Period
- When all 3 are known, we can unambiguously locate an observation in the table.
- In SDMX such concepts are called **dimensions**.
 - A dimension is similar in meaning to a database table's primary key field.

Primary Measure

- Observation Value represents a concept that describes the actual values being transmitted.
- In SDMX, such a concept is called **Primary Measure**.
- Primary Measure is usually represented by concept **OBS_VALUE**.

Attribute

- In our example, **Unit Multiplier** represents additional information about observations.
- This concept is not used to identify a series or observation.
- Such concepts in SDMX are called attributes.
 - Not to be confused with XML attributes!
 - Similar to a database table's non-primary key fields.

Dimension or Attribute?

- Choosing the role of a concept has profound implications on the structure of data.
- Concepts that identify data, should be made dimensions. Concepts that provide additional information about data, should be made attributes.
- If a concept is a dimension, it is possible to have time series that are different only in the value of this concept.
 - E.g. if Unit of Measure is a dimension, it is possible to have separate series for "T" and "T/HA" or, more controversially, "KG" and "T"

Special Dimensions

- **TIME** dimension provides observation time. If a DSD describes time series data, it must have one TIME dimension.
- FREQUENCY dimension describes interval between observations. If there is a TIME dimension, one other dimension must be marked as FREQUENCY dimension.

Exercise 1: Identifying concepts

- Identify concepts in the table
- Mark each concept as:
 - Dimension
 - Time Dimension
 - Primary Measure (i.e. observation value)
 - Attribute

Representation

- When data are transferred, its descriptor concepts must have valid values.
- A concept can be
 - Coded
 - Un-coded with format
 - Un-coded free text

Code

- "A language-independent set of letters, numbers or symbols that represent a concept whose meaning is described in a natural language."
- A sequence of characters that can be associated with a descriptions in any number of languages.
 - Descriptions can be updated without disrupting mappings or other components of data exchange.

Code List

- "A predefined list from which some statistical coded concepts take their values."
- A code list is a collection of codes maintained as a unit.
- A code list enumerates all possible values for a concept or set of concepts
 - Sex code list
 - Country code list
 - Indicator code list, etc

Code List: Some Examples

Code	Description
SI_POV_DAY1	Population below international poverty line (1.1.1)
SI_POV_EMP1	Employed population below international poverty line (1.1.1)
SI_POV_NAHC	Population below national poverty line (1.2.1)
SI_COV_BENFTS	Population covered by at least one social protection floor/system (1.3.1)
SI_COV_CHLD	Children covered by social protection (1.3.1)
SI_COV_DISAB	Population with severe disabilities collecting disability social protection benefits (1.3.1)
SI_COV_LMKT	Population covered by labour market programs (1.3.1)
SI_COV_MATNL	Mothers receiving maternity benefits and benefits for newborns (1.3.1)
SI_COV_PENSN	Population above retirement age receiving a pension (1.3.1)

Code	Description (EN)	Description (FR)	Code	Description
_T	Total or no breakdown by education level	Total ou aucune ventilation par niveau de s	1	World
ISCED11_0	Early childhood education	Education de la petite enfance	2	Africa (M49)
ISCED11_01	Early childhood educational development	Développement éducatif de la petite enfan	4	Afghanistan
ISCED11_02	Pre-primary education	Enseignement préprimaire	5	South America (M49)
ISCED11_1	Primary education	Enseignement primaire	8	Albania
ISCED11_10	Primary education	Enseignement primaire	9	Oceania (M49)
	l	L_ · · · · · · · · · · · · · · · · · · ·	10	Antarctica

11

12

Western Africa (M49)

Algeria

Un-coded Concepts

- Can be free-text: Any valid text can be used as a value for the concept.
 - Footnote
- Can have their format specified
 - Postal code: 5 digits

Representation of concepts in SDMX

- **Dimensions** must be either coded or have their format specified.
 - Free text is not allowed.
- Attributes can be coded or un-coded; format may optionally be specified.

Exercise 2: Representation

- Working with your model, determine representation for each concept
 - Coded, formatted, free-text
- Develop code lists and formats for your concepts
 - Use any approach for your codes

Importance of Data Model

- Data model, represented by DSD, defines what data can be encoded and transmitted.
- Flaws in a DSD may have significant adverse impact on data exchange
 - Missing concepts
 - Incorrect role of concepts
 - Un-optimized model

Data Structure Definition: Design Considerations

Parsimony

- No redundant dimensions
- Attributes attached at the highest possible level

• Simplicity

- "Mixed dimensions" are used to minimize the number of dimensions
- Can help avoid invalid combinations of key values
- Should be used with caution
- Opposite of "purity"

Data Structure Definition: Design Considerations (2)

• Unambiguousness

- Data must retain meaning outside usual context
- Do you supply country code with your data?
- Density
 - Model should be such that data could be supplied for most or all of possible combinations of key values
 - Related to simplicity
- Orthogonality
 - Meaning of the value of concepts should be independent of each other
 - Helps avoid ambiguity

DSD Design Tradeoffs: Simplicity vs Purity

- A *simple* model may increase maintenance costs
 - Codes frequently need to be added
 - Difficult to map and consume
- A *pure* model may increase the number of errors due its lower *density*
 - Some combinations of key values are impossible in reality but valid from the DSD point of view
- Splitting the *pure* model into multiple DSDs to improve *density* may increase maintenance costs
 - Multiple DSDs and other artefacts need to be maintained